Himpunan penyelesaian dari pertidaksamaan \( (\log_a x)^2 - \log_a x -2 > 0 \) dengan \( 0 < a < 1 \) adalah…
(SBMPTN 2019)
Pembahasan:
Sebelum kita jawab soal ini, ingat bahwa jika \( {}^a \! \log f(x) > {}^a \! \log g(x) \), maka untuk \( a > 1 \) berlaku \( f(x) > g(x) \) dan untuk \( 0 < a < 1 \) berlaku \( f(x) < g(x) \).
Untuk menyelesaikan pertidaksamaan logaritma di atas, kita bisa misalkan \( \log_a x = m \) sehingga kita peroleh berikut:
Dari hasil di atas kita peroleh himpunan penyelesaian pertidaksamaan kuadratnya yaitu \(m < -1\) atau \(m>2\).
Selanjutnya, kita kembalikan nilai \( m = \log_a x \). Perhatikan berikut ini:
Jadi, himpunan penyelesaian (HP) dari pertidaksamaan logaritma di atas yaitu \( x < a^2 \) atau \(x > a^{-1} \).
Jawaban A.